Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 15, 2026
-
Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)Designing ligand-binding proteins, such as enzymes and biosensors, is essential in bioengineering and protein biology. One critical step in this process involves designing protein pockets, the protein interface binding with the ligand. Current approaches to pocket generation often suffer from time-intensive physical computations or template-based methods, as well as compromised generation quality due to the overlooking of domain knowledge. To tackle these challenges, we propose PocketFlow, a generative model that incorporates protein-ligand interaction priors based on flow matching. During training, PocketFlow learns to model key types of protein-ligand interactions, such as hydrogen bonds. In the sampling, PocketFlow leverages multi-granularity guidance (overall binding affinity and interaction geometry constraints) to facilitate generating high-affinity and valid pockets. Extensive experiments show that PocketFlow outperforms baselines on multiple benchmarks, e.g., achieving an average improvement of 1.29 in Vina Score and 0.05 in scRMSD. Moreover, modeling interactions make PocketFlow a generalized generative model across multiple ligand modalities, including small molecules, peptides, and RNA.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Designing protein-binding proteins is critical for drug discovery. However, artificial-intelligence-based design of such proteins is challenging due to the complexity of protein–ligand interactions, the flexibility of ligand molecules and amino acid side chains, and sequence–structure dependencies. We introduce PocketGen, a deep generative model that produces residue sequence and atomic structure of the protein regions in which ligand interactions occur. PocketGen promotes consistency between protein sequence and structure by using a graph transformer for structural encoding and a sequence refinement module based on a protein language model. The graph transformer captures interactions at multiple scales, including atom, residue and ligand levels. For sequence refinement, PocketGen integrates a structural adapter into the protein language model, ensuring that structure-based predictions align with sequence-based predictions. PocketGen can generate high-fidelity protein pockets with enhanced binding affinity and structural validity. It operates ten times faster than physics-based methods and achieves a 97% success rate, defined as the percentage of generated pockets with higher binding affinity than reference pockets. Additionally, it attains an amino acid recovery rate exceeding 63%.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government
